
COMPONENTS - APP INVENTOR FOR ANDROID

COMPONENT REFERENCE

COMPONENT TYPES

This document describes the components you can use in App Inventor to build your apps.

Each component can have methods, events, and properties. Most properties can be changed by apps — these
properties have blocks you can use to get and set the values. Some properties can't be changed by apps — these
only have blocks you can use to get the values, not set them. In this document, read-only properties are shown
in italics . A few properties are only available in the Designer.

USER INTERFACE COMPONENTS - APP INVENTOR FOR ANDROID

TABLE OF CONTENTS

 Button
 CheckBox
 DatePicker
 Image
 Label
 ListPicker
 ListView
 Notifier
 PasswordTextBox
 Screen
 Slider
 Spinner
 TextBox
 TimePicker
 WebViewer

BUTTON

Button with the ability to detect clicks. Many aspects of its appearance can be changed, as well as whether it is
clickable (Enabled), can be changed in the Designer or in the Blocks Editor.

PROPERTIES

BackgroundColor

Returns the button's background color

Enabled
If set, user can tap check box to cause action.

FontBold
If set, button text is displayed in bold.

FontItalic
If set, button text is displayed in italics.

FontSize
Point size for button text.

FontTypeface (designer only)
Font family for button text.

Height
Button height (y-size).

Image
Image to display on button.

Shape (designer only)
Specifies the button's shape (default, rounded, rectangular, oval). The shape will not be visible if an Image is
being displayed.

ShowFeedback
Specifies if a visual feedback should be shown for a button that as an image as background.

Text
Text to display on button.

TextAlignment (designer only)
Left, center, or right.

TextColor
Color for button text.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width
Button width (x-size).

EVENTS

Click()

User tapped and released the button.

GotFocus()
Indicates the cursor moved over the button so it is now possible to click it.

LongClick()
User held the button down.

LostFocus()
Indicates the cursor moved away from the button so it is now no longer possible to click it.

TouchDown()

Indicates that the button was pressed down.

TouchUp()
Indicates that a button has been released.

CHECKBOX

Check box components can detect user taps and can change their boolean state in response.

A check box component raises an event when the user taps it. There are many properties affecting its appearance
that can be set in the Designer or Blocks Editor.

PROPERTIES

BackgroundColor

Color for check box background.

Checked
True if the box is checked, false otherwise.

Enabled
If set, user can tap check box to cause action.

Height
Check box height (y-size).

Width
Check box width (x-size).

Text
Text to display on check box.

TextColor
Color for check box text.

Visible
If set, check box is visible.

EVENTS

Click()

User tapped and released check box.

GotFocus()
Check box became the focused component.

LostFocus()
Check box stopped being the focused component.

DATEPICKER

A button that, when clicked on, launches a popup dialog to allow the user to select a date.

PROPERTIES

BackgroundColor

Returns the button's background color

DAY
the Day of the month that was last picked using the DatePicker.

Enabled
If set, user can tap check box to cause action.

FontBold
If set, button text is displayed in bold.

FontItalic
If set, button text is displayed in italics.

FontSize
Point size for button text.

FontTypeface (designer only)
Font family for button text.

Height
Image

Image to display on button.

MONTH
the number of the Month that was last picked using the DatePicker. Note that months start in 1 = January, 12
= December.

MONTHINTEXT
Returns the name of the Month that was last picked using the DatePicker, in textual format.

Shape (designer only)
Specifies the button's shape (default, rounded, rectangular, oval). The shape will not be visible if an Image is
being displayed.

ShowFeedback
Specifies if a visual feedback should be shown for a button that as an image as background.

Text
Text to display on button.

TextAlignment (designer only)
Left, center, or right.

TextColor
Color for button text.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width
YEAR

the Year that was last picked using the DatePicker

EVENTS

AfterDateSet()

Event that runs after the user chooses a Date in the dialog

GotFocus()
Indicates the cursor moved over the button so it is now possible to click it.

LostFocus()
Indicates the cursor moved away from the button so it is now no longer possible to click it.

TouchDown()
Indicates that the button was pressed down.

TouchUp()
Indicates that a button has been released.

METHODS

LaunchPicker()

Launches the DatePicker popup.

SetDateToDisplay(number year, number month, number day)
Allows the user to set the date to be displayed when the date picker opens. Valid values for the month field
are 1-12 and 1-31 for the day field.

IMAGE

Component for displaying images. The picture to display, and other aspects of the Image's appearance, can be
specified in the Designer or in the Blocks Editor.

PROPERTIES

Animation

This is a limited form of animation that can attach a small number of motion types to images. The allowable
motions are ScrollRightSlow, ScrollRight, ScrollRightFast, ScrollLeftSlow, ScrollLeft, ScrollLeftFast, and Stop

Height
Picture

Visible

Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS
none

METHODS
none

LABEL

Labels are components used to show text.

A label displays text which is specified by the Text property. Other properties, all of which can be set in the Designer
or Blocks Editor, control the appearance and placement of the text.

PROPERTIES

BackgroundColor

Color for label background.

FontBold
If set, label text is displayed in bold.

FontItalic
If set, label text is displayed in italics.

FontSize
Point size for label text.

FontTypeface
Font family for label text.

HasMargins
Reports whether or not the label appears with margins. All four margins (left, right, top, bottom) are the same.
This property has no effect in the designer, where labels are always shown with margins.

Height
Label height (y-size).

Width
Label width (x-size).

Text
Text to display on label.

TextAlignment
Left, center, or right.

TextColor
Color for label text.

Visible
If set, label is visible.

LISTPICKER

A button that, when clicked on, displays a list of texts for the user to choose among. The texts can be specified
through the Designer or Blocks Editor by setting theElementsFromString property to their string-separated
concatenation (for example, CHOICE 1, CHOICE 2, CHOICE 3) or by setting the Elements property to a List in the
Blocks editor.
Setting property ShowFilterBar to true, will make the list searchable. Other properties affect the appearance of the
button (TextAlignment, BackgroundColor, etc.) and whether it can be clicked on (Enabled).

PROPERTIES

BackgroundColor

Returns the button's background color

Elements
List of Choices to Display (as a list)

ElementsFromString
Comma separated list of choices to use

Enabled
Whether the ListPicker can be tapped

FontBold (designer only)
If set, list picker text is displayed in bold.

FontItalic (designer only)
If set, list picker text is displayed in italics.

FontSize (designer only)
Point size for list picker text.

FontTypeface (designer only)
Font family for list picker text.

Height
Box height (y-size).

Image
Specifies the path of the button's image. If there is both an Image and a BackgroundColor, only the Image will
be visible.

Selection
The selected item. When directly changed by the programmer, the SelectionIndex property is also changed to
the first item in the ListPicker with the given value. If the value does not appear, SelectionIndex will be set to
0.

SelectionIndex
The index of the currently selected item, starting at 1. If no item is selected, the value will be 0. If an attempt is
made to set this to a number less than 1 or greater than the number of items in the ListPicker, SelectionIndex
will be set to 0, and Selection will be set to the empty text.

Shape (designer only)
Specifies the button's shape (default, rounded, rectangular, oval). The shape will not be visible if an Image is
being displayed.

ShowFeedback
Specifies if a visual feedback should be shown for a button that as an image as background.

ShowFilterBar
Returns current state of ShowFilterBar indicating if Search Filter Bar will be displayed on ListPicker or not

Text
Title text to display on list picker.

TextAlignment (designer only)
Left, center, or right.

TextColor
Color for text.

Title
Optional title displayed at the top of the list of choices.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width
Box width (x-size).

ItemTextColor
The text color of the ListPicker items.

ItemBackgroundColor
The background color of the ListPicker items.

EVENTS

AfterPicking()

Event to be raised after the picker activity returns its result and the properties have been filled in.

BeforePicking()
Event to raise when the button of the component is clicked or the list is shown using the Open block. This
event occurs before the list of items is displayed, and can be used to prepare the list before it is shown.

GotFocus()
Indicates the cursor moved over the button so it is now possible to click it.

LostFocus()
Indicates the cursor moved away from the button so it is now no longer possible to click it.

METHODS

Open()

Opens the picker, as though the user clicked on it.

LISTVIEW

This is a visible component that allows to place a list of text elements in your Screen to display.
The list can be set using the ElementsFromString property or using the Elements block in the blocks editor.
Warning: This component will not work correctly on Screens that are scrollable.

PROPERTIES

BackgroundColor

The color of the listview background.

Elements
List of text elements to build your list.

ElementsFromString
Build a list with a series of text elements separated by commas such as: Cheese,Fruit,Bacon,Radish. Each
word before the comma will be an element in the list.

Height
Determines the height of the list on the view.

Selection
Returns the text last selected in the ListView.

SelectionIndex
The index of the currently selected item, starting at 1. If no item is selected, the value will be 0. If an attempt is
made to set this to a number less than 1 or greater than the number of items in the ListView, SelectionIndex
will be set to 0, and Selection will be set to the empty text.

ShowFilterBar
Sets visibility of ShowFilterBar. True will show the bar, False will hide it.

TextColor
The text color of the listview items.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width
Determines the width of the list on the view.

EVENTS

AfterPicking()

Simple event to be raised after the an element has been chosen in the list. The selected element is available
in the Selection property.

METHODS
none

NOTIFIER

The Notifier component displays alert dialogs, messages, and temporary alerts, and creates Android log entries
through the following methods:

 ShowMessageDialog: displays a message which the user must dismiss by pressing a button.
 ShowChooseDialog: displays a message two buttons to let the user choose one of two responses, for

example, yes or no, after which the AfterChoosing event is raised.
 ShowTextDialog: lets the user enter text in response to the message, after which the AfterTextInput event is

raised.
 ShowAlert: displays a temporary alert that goes away by itself after a short time.
 ShowProgressDialog: displays an alert with a loading spinner that cannot be dismissed by the user. It can only

be dismissed by using the DismissProgressDialog block.
 DismissProgressDialog: Dismisses the progress dialog displayed by ShowProgressDialog.
 LogError: logs an error message to the Android log.
 LogInfo: logs an info message to the Android log.
 LogWarning: logs a warning message to the Android log.
 The messages in the dialogs (but not the alert) can be formatted using the following HTML tags:, <big>,

<blockquote>,
, <cite>, <dfn>, <div>, , <small>, , <sub>, <sup>, <tt>. <u>
 You can also use the font tag to specify color, for example, . Some of the available color

names are aqua, black, blue, fuchsia, green, grey, lime, maroon, navy, olive, purple, red, silver, teal, white,
and yellow

PROPERTIES

BackgroundColor

Specifies the background color for alerts (not dialogs).

NotifierLength (designer only)
specifies the length of time that the alert is shown -- either "short" or "long".

TextColor
Specifies the text color for alerts (not dialogs).

EVENTS

AfterChoosing(text choice)

Event after the user has made a selection for ShowChooseDialog.

AfterTextInput(text response)
Event raised after the user has responded to ShowTextDialog.

METHODS

DismissProgressDialog()

Dismiss a previously displayed ProgressDialog box

LogError(text message)
Writes an error message to the Android system log. See the Google Android documentation for how to access
the log.

LogInfo(text message)
Writes an information message to the Android log.

LogWarning(text message)

Writes a warning message to the Android log. See the Google Android documentation for how to access the
log.

ShowAlert(text notice)
Display a temporary notification

ShowChooseDialog(text message, text title, text button1Text, text button2Text, boolean
cancelable)

Shows a dialog box with two buttons, from which the user can choose. If cancelable is true there will be an
additional CANCEL button. Pressing a button will raise the AfterChoosing event. The "choice" parameter to
AfterChoosing will be the text on the button that was pressed, or "Cancel" if the CANCEL button was pressed.

ShowMessageDialog(text message, text title, text buttonText)
Display an alert dialog with a single button that dismisses the alert.

ShowProgressDialog(text message, text title)
Shows a dialog box with an optional title and message (use empty strings if they are not wanted). This dialog
box contains a spinning artifact to indicate that the program is working. It cannot be canceled by the user but
must be dismissed by the App Inventor Program by using the DismissProgressDialog block.

ShowTextDialog(text message, text title, boolean cancelable)
Shows a dialog box where the user can enter text, after which the AfterTextInput event will be raised. If
cancelable is true there will be an additional CANCEL button. Entering text will raise the AfterTextInput event.
The "response" parameter to AfterTextInput will be the text that was entered, or "Cancel" if the CANCEL
button was pressed.

PASSWORDTEXTBOX

Users enter passwords in a password text box component, which hides the text that has been typed in it.

A password text box is the same as the ordinary TextBox component, except that it does not display the characters
typed by the user.
You can get or set the value of the text in the box with the Text property. If Text is blank, you can use
the Hint property to provide the user with a suggestion of what to type. The Hint appears as faint text in the box.

Password text box components are usually used with a button component. The user taps the button after entering
text.

METHODS

RequestFocus()

Sets the PasswordTextBox active.

PROPERTIES

BackgroundColor

Color for text box background.

Enabled
If set, user can enter a password in the box.

FontBold
If set, text is displayed in bold.

FontItalic
If set, text is displayed in italics.

FontSize
Point size for text.

FontTypeface
Font family for text.

Height
Box height (y-size).

Width
Box width (x-size).

TextAlignment
Left, center, or right.

TextColor
Color for text.

Hint
Password hint.

EVENTS

GotFocus()

Box became the focused component.

LostFocus()
Box is no longer the focused component.

SCREEN

Top-level component containing all other components in the program

PROPERTIES

AboutScreen

Information about the screen. It appears when "About this Application" is selected from the system menu. Use
it to tell users about your app. In multiple screen apps, each screen has its own AboutScreen info.

AlignHorizontal
A number that encodes how contents of the screen are aligned horizontally. The choices are: 1 = left aligned,
2 = horizontally centered, 3 = right aligned.

AlignVertical
A number that encodes how the contents of the arrangement are aligned vertically. The choices are: 1 =
aligned at the top, 2 = vertically centered, 3 = aligned at the bottom. Vertical alignment has no effect if the
screen is scrollable.

BackgroundColor
AppName (designer only)

This is the display name of the installed application in the phone. If the AppName is blank, it will be set to the
name of the project when the project is built.

BackgroundImage
The screen background image.

CloseScreenAnimation
The animation for closing current screen and returning to the previous screen. Valid options are default, fade,
zoom, slidehorizontal, slidevertical, and none

HEIGHT
Screen height (y-size).

Icon (designer only)
OpenScreenAnimation

The animation for switching to another screen. Valid options are default, fade, zoom, slidehorizontal,
slidevertical, and none

ScreenOrientation
The requested screen orientation, specified as a text value. Commonly used values are landscape, portrait,
sensor, user and unspecified. See the Android developer documentation for ActivityInfo.Screen_Orientation
for the complete list of possible settings.

Scrollable
When checked, there will be a vertical scrollbar on the screen, and the height of the application can exceed
the physical height of the device. When unchecked, the application height is constrained to the height of the
device.

SHOWSTATUSBAR
The status bar is the topmost bar on the screen. This property reports whether the status bar is visible.

TITLEVISIBLE
The title bar is the top gray bar on the screen. This property reports whether the title bar is visible.

Title
The caption for the form, which apears in the title bar

VersionCode (designer only)
An integer value which must be incremented each time a new Android Application Package File (APK) is
created for the Google Play Store.

VersionName (designer only)
A string which can be changed to allow Google Play Store users to distinguish between different versions of
the App.

WIDTH
Screen width (x-size).

EVENTS

BackPressed()

Device back button pressed.

ErrorOccurred(component component, text functionName, number errorNumber, text message)
Event raised when an error occurs. Only some errors will raise this condition. For those errors, the system will
show a notification by default. You can use this event handler to prescribe an error behavior different than the
default.

Initialize()
Screen starting

OtherScreenClosed(text otherScreenName, any result)
Event raised when another screen has closed and control has returned to this screen.

ScreenOrientationChanged()
Screen orientation changed

METHODS
none

SLIDER

A Slider is a progress bar that adds a draggable thumb. You can touch the thumb and drag left or right to set the slider
thumb position. As the Slider thumb is dragged, it will trigger the PositionChanged event, reporting the position of the
Slider thumb. The reported position of the Slider thumb can be used to dynamically update another component
attribute, such as the font size of a TextBox or the radius of a Ball.

PROPERTIES

ColorLeft

The color of slider to the left of the thumb.

ColorRight
The color of slider to the left of the thumb.

MaxValue
Sets the maximum value of slider. Changing the maximum value also resets Thumbposition to be halfway
between the minimum and the (new) maximum. If the new maximum is less than the current minimum, then
minimum and maximum will both be set to this value. Setting MaxValue resets the thumb position to halfway
between MinValue and MaxValue and signals the PositionChanged event.

MinValue
Sets the minimum value of slider. Changing the minimum value also resets Thumbposition to be halfway
between the (new) minimum and the maximum. If the new minimum is greater than the current maximum,
then minimum and maximum will both be set to this value. Setting MinValue resets the thumb position to
halfway between MinValue and MaxValue and signals the PositionChanged event.

ThumbPosition
Sets the position of the slider thumb. If this value is greater than MaxValue, then it will be set to same value as
MaxValue. If this value is less than MinValue, then it will be set to same value as MinValue.

ThumbEnabled
Sets whether or not to display the slider thumb.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

PositionChanged(number thumbPosition)

Indicates that position of the slider thumb has changed.

METHODS

none

SPINNER

A spinner component that displays a pop-up with a list of elements. These elements can be set in the Designer or
Blocks Editor by setting theElementsFromStringproperty to a string-separated concatenation (for example, CHOICE 1,
CHOICE 2, CHOICE 3) or by setting the Elements property to a List in the Blocks editor. Spinners are created with the
first item already selected. So selecting it does not generate an After Picking event. Consequently it's useful to make
the first Spinner item be a non-choice like "Select from below...".

PROPERTIES

Elements

returns a list of text elements to be picked from.

ElementsFromString
sets the Spinner list to the elements passed in the comma-separated string

Height
Prompt

Text with the current title for the Spinner window

Selection
Returns the current selected item in the spinner

SelectionIndex
The index of the currently selected item, starting at 1. If no item is selected, the value will be 0.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

AfterSelecting(text selection)

Event called after the user selects an item from the dropdown list.

METHODS

DisplayDropdown()

displays the dropdown list for selection, same action as when the user clicks on the spinner.

TEXTBOX

Users enter text in a text box component.

The initial or user-entered text value in a text box component is in the Text property. If Text is blank, you can use
the Hint property to provide the user with a suggestion of what to type. The Hint appears as faint text in the box.
The MultiLine property determines if the text can have more than one line. For a single line text box, the keyboard will
close automatically when the user presses the Done key. To close the keyboard for multiline text boxes, the app
should use the HideKeyboard method or rely on the user to press the Back key.
The NumbersOnly property restricts the keyboard to accept numeric input only.
Other properties affect the appearance of the text box (TextAlignment , BackgroundColor , etc.) and whether it can be
used (Enabled).
Text boxes are usually used with the Button component, with the user clicking on the button when text entry is
complete.
If the text entered by the user should not be displayed, use PasswordTextBox instead.

METHODS

HideKeyboard()

Hide the keyboard. Only multiline text boxes need this. Single line text boxes close the keyboard when the
users presses the Done key.

RequestFocus()
Sets the textbox active.

PROPERTIES

BackgroundColor

The background color of the input box. You can choose a color by name in the Designer or in the Blocks
Editor. The default background color is 'default' (shaded 3-D look).

Enabled
Whether the user can enter text into this input box. By default, this is true.

FontBold (designer only)
Whether the font for the text should be bold. By default, it is not.

FontItalic (designer only)
Whether the text should appear in italics. By default, it does not.

FontSize
The font size for the text. By default, it is 14.0 points.

FontTypeface (designer only)
The font for the text. The value can be changed in the Designer.

Height
Hint

Text that should appear faintly in the input box to provide a hint as to what the user should enter. This can
only be seen if the Text property is empty.

MultiLine

If true, then this text box accepts multiple lines of input, which are entered using the return key. For single line
text boxes there is a Done key instead of a return key, and pressing Done hides the keyboard. The app
should call the HideKeyboard method to hide the keyboard for a mutiline text box.

NumbersOnly
If true, then this text box accepts only numbers as keyboard input. Numbers can include a decimal point and
an optional leading minus sign. This applies to keyboard input only. Even if NumbersOnly is true, you can use
[set Text to] to enter any text at all.

Text
The text in the input box, which can be set by the programmer in the Designer or Blocks Editor, or it can be
entered by the user (unless the Enabled property is false).

TextAlignment (designer only)

Whether the text should be left justified, centered, or right justified. By default, text is left justified.

TextColor
The color for the text. You can choose a color by name in the Designer or in the Blocks Editor. The default
text color is black.

Visible
Whether the component is visible

Width

EVENTS

GotFocus()

Event raised when this component is selected for input, such as by the user touching it.

LostFocus()
Event raised when this component is no longer selected for input, such as if the user touches a different text
box.

TIMEPICKER

A button that, when clicked on, launches a popup dialog to allow the user to select a time.

PROPERTIES

BackgroundColor

Returns the button's background color

Enabled
FontBold (designer only)

FontItalic (designer only)

FontSize (designer only)

FontTypeface (designer only)

Height

HOUR

The hour of the last time set using the time picker. The hour is in a 24 hour format. If the last time set was
11:53 pm, this property will return 23.

Image
Specifies the path of the button's image. If there is both an Image and a BackgroundColor, only the Image will
be visible.

MINUTE
The minute of the last time set using the time picker

Shape (designer only)
Specifies the button's shape (default, rounded, rectangular, oval). The shape will not be visible if an Image is
being displayed.

ShowFeedback
Specifies if a visual feedback should be shown for a button that as an image as background.

Text
TextAlignment (designer only)

TextColor

Visible

Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

AfterTimeSet()

This event is run when a user has set the time in the popup dialog.

GotFocus()
Indicates the cursor moved over the button so it is now possible to click it.

LostFocus()
Indicates the cursor moved away from the button so it is now no longer possible to click it.

METHODS
none

WEBVIEWER

Component for viewing Web pages. The Home URL can be specified in the Designer or in the Blocks Editor. The view
can be set to follow links when they are tapped, and users can fill in Web forms. Warning: This is not a full browser.
For example, pressing the phone's hardware Back key will exit the app, rather than move back in the browser history.

You can use the WebViewer.WebViewString property to communicate between your app and Javascript code running
in the Webviewer page. In the app, you get and set WebViewString. In the WebViewer, you include Javascript that
references the window.AppInventor object, using the methoods and SETWEBVIEWSTRING(TEXT).
For example, if the WebViewer opens to a page that contains the Javascript command
DOCUMENT.WRITE("THE ANSWER IS" + WINDOW.APPINVENTOR.GETWEBVIEWSTRING());
and if you set WebView.WebVewString to "hello", then the web page will show
THE ANSWER IS HELLO.
And if the Web page contains Javascript that executes the command
WINDOWAPPINVENTOR.SETWEBVIEWSTRING("HELLO FROM JAVASCRIPT"),
then the value of the WebViewString property will be
HELLO FROM JAVASCRIPT.

PROPERTIES

CURRENTPAGETITLE

Title of the page currently viewed

CURRENTURL
URL of the page currently viewed. This could be different from the Home URL if new pages were visited by
following links.

FollowLinks
Determines whether to follow links when they are tapped in the WebViewer. If you follow links, you can use
GoBack and GoForward to navigate the browser history.

Height
HomeUrl

URL of the page the WebViewer should initially open to. Setting this will load the page.

IgnoreSslError
Determine whether or not to ignore SSL errors. Set to true to ignore errors. Use this to accept self signed
certificates from websites.

PromptforPermission
If True, then prompt the user of the WebView to give permission to access the geolocation API. If False, then
assume permission is granted.

UsesLocation (designer only)
Whether or not to give the application permission to use the Javascript geolocation API. This property is
available only in the designer.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

WebViewString
Gets the WebView's String, which is viewable through Javascript in the WebView as the window.AppInventor
object

Width

EVENTS
none

METHODS

boolean CanGoBack()

Returns true if the WebViewer can go back in the history list.

boolean CanGoForward()
Returns true if the WebViewer can go forward in the history list.

ClearCaches()
Clear the WebViewer caches

ClearLocations()
Clear stored location permissions.

GoBack()
Go back to the previous page in the history list. Does nothing if there is no previous page.

GoForward()
Go forward to the next page in the history list. Does nothing if there is no next page.

GoHome()
Loads the home URL page. This happens automatically when the home URL is changed.

GoToUrl(text url)
Load the page at the given URL.

LAYOUT COMPONENTS - APP INVENTOR FOR ANDROID

TABLE OF CONTENTS

 HorizontalArrangement
 TableArrangement
 VerticalArrangement

HORIZONTALARRANGEMENT

Use a horizontal arrangement component to display a group of components laid out from left to right.

This component is a formatting element in which you place components that should be displayed from left to right. If
you want to have components displayed one over another, use VerticalArrangement instead.

In a HorizontalArrangement, components are arranged along the horizontal axis, vertically center-aligned.

If a HorizontalArrangement's Height property is set to Automatic, the actual height of the arrangement is determined
by the tallest component in the arrangement whose Height property is not set to Fill Parent. If a
HorizontalArrangment's Height property is set to Automatic and it contains only components whose Height properties
are set to Fill Parent, the actual height of the arrangement is calculated using the automatic heights of the
components. If a HorizontalArrangement's Height property is set to Automatic and it is empty, the height will be 100.

If a HorizontalArrangement's Width property is set to Automatic, the actual width of the arrangement is determined by
the sum of the widths of the components. If a HorizontalArrangement's Width property is set to Automatic, any
components whose Width properties are set to Fill Parent will behave as if they were set to Automatic.

If a HorizontalArrangement's Width property is set to Fill Parent or specified in pixels, any components whose Width
properties are set to Fill Parent will equally take up the width not occupied by other components.

PROPERTIES

Visible

If true, component and its contents are visible.

Height
Horizontal arrangement height (y-size).

Width
Horizontal arrangement width (x-size).

TABLEARRANGEMENT

Use a table arrangement component to display a group of components in a tabular fashion.

This component is a formatting element in which you place components that should be displayed in tabular form.

In a TableArrangement, components are arranged in a grid of rows and columns, with not more than one component
visible in each cell. If multiple components occupy the same cell, only the last one will be visible.

Within each row, components are vertically center-aligned.

The width of a column is determined by the widest component in that column. When calculating column width, the
automatic width is used for components whose Width property is set to Fill Parent. However, each component will
always fill the full width of the column that it occupies.

The height of a row is determined by the tallest component in that row whose Height property is not set to Fill Parent.
If a row contains only components whose Height properties are set to Fill Parent, the height of the row is calculated
using the automatic heights of the components.

PROPERTIES

Visible

If true, component and its contents are visible.

Rows (number‐of‐rows)
The number of rows in the table.

Columns (number‐of‐columns)
The number of columns in the table.

Height
Table arrangement height (y-size).

Width
Table arrangement width (x-size).

VERTICALARRANGEMENT

Use a vertical arrangement component to display a group of components laid out from top to bottom, left-aligned.

This component is a formatting element in which you place components that should be displayed one below another.
The first child component is stored on top, the second beneath it, and so on. If you want to have components
displayed next to one another, use HorizontalArrangement instead.

In a VerticalArrangement, components are arranged along the vertical axis, left-aligned.

If a VerticalArrangement's Width property is set to Automatic, the actual width of the arrangement is determined by the
widest component in the arrangement whose Width property is not set to Fill Parent. If a VerticalArrangement's Width
property is set to Automatic and it contains only components whose Width properties are set to Fill Parent, the actual
width of the arrangement is calculated using the automatic widths of the components. If a VerticalArrangement's Width
property is set to Automatic and it is empty, the width will be 100.

If a VerticalArrangement's Height property is set to Automatic, the actual height of the arrangement is determined by
the sum of the heights of the components. If a VerticalArrangement's Height property is set to Automatic, any
components whose Height properties are set to Fill Parent will behave as if they were set to Automatic.

If a VerticalArrangement's Height property is set to Fill Parent or specified in pixels, any components whose Height
properties are set to Fill Parent will equally take up the height not occupied by other components.

PROPERTIES

Visible

If true, component and its contents are visible.

Height
Vertical arrangement height (y-size).

Width
Vertical arrangement width (x-size).

MEDIA COMPONENTS - APP INVENTOR FOR ANDROID

TABLE OF CONTENTS

 Camcorder
 Camera
 ImagePicker
 Player
 Sound
 SoundRecorder
 SpeechRecognizer
 TextToSpeech
 VideoPlayer
 YandexTranslate

CAMCORDER

A component to record a video using the device's camcorder.After the video is recorded, the name of the file on the
phone containing the clip is available as an argument to the AfterRecording event. The file name can be used, for
example, to set the source property of a VideoPlayer component.

PROPERTIES
none

EVENTS

AfterRecording(text clip)

Indicates that a video was recorded with the camera and provides the path to the stored picture.

METHODS

RecordVideo()

Records a video, then raises the AfterRecoding event.

CAMERA

Use a camera component to take a picture on the phone.

Camera is a non-visible component that takes a picture using the device's camera. After the picture is taken, the path
to the file on the phone containing the picture is available as an argument to the AfterPicture event. The path can be
used, for example, as the Picture property of an Image component.

PROPERTIES

UseFront

Specifies whether the front-facing camera should be used (when available). If the device does not have a
front-facing camera, this option will be ignored and the camera will open normally.

METHODS

TakePicture()

Opens the phone's camera to allow a picture to be taken.

EVENTS

AfterPicture(Text image)

Called after the picture is taken. The text argument image is the path that can be used to locate the image on
the phone.

IMAGEPICKER

A special-purpose button. When the user taps an image picker, the device's image gallery appears, and the user can
choose an image. After an image is picked, it is saved, and the Selected property will be the name of the file where the
image is stored. In order to not fill up storage, a maximum of 10 images will be stored. Picking more images will delete
previous images, in order from oldest to newest.

PROPERTIES

BackgroundColor

Returns the button's background color

Enabled
FontBold (designer only)

FontItalic (designer only)

FontSize (designer only)

FontTypeface (designer only)

Height

Image

Specifies the path of the button's image. If there is both an Image and a BackgroundColor, only the Image will
be visible.

SELECTION
Path to the file containing the image that was selected.

Shape (designer only)
Specifies the button's shape (default, rounded, rectangular, oval). The shape will not be visible if an Image is
being displayed.

ShowFeedback
Specifies if a visual feedback should be shown for a button that as an image as background.

Text
TextAlignment (designer only)

TextColor

Visible

Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

AfterPicking()

Simple event to be raised after the picker activity returns its result and the properties have been filled in.

BeforePicking()
Simple event to raise when the component is clicked but before the picker activity is started.

GotFocus()
Indicates the cursor moved over the button so it is now possible to click it.

LostFocus()
Indicates the cursor moved away from the button so it is now no longer possible to click it.

METHODS

Open()

Opens the picker, as though the user clicked on it.

PLAYER

Multimedia component that plays audio and controls phone vibration. The name of a multimedia field is specified in
the Source property, which can be set in the Designer or in the Blocks Editor. The length of time for a vibration is
specified in the Blocks Editor in milliseconds (thousandths of a second).
For supported audio formats, see Android Supported Media Formats.
This component is best for long sound files, such as songs, while the Sound component is more efficient for short files,
such as sound effects.

PROPERTIES

ISPLAYING

Reports whether the media is playing

Loop
If true, the player will loop when it plays. Setting Loop while the player is playing will affect the current playing.

PlayOnlyInForeground
If true, the player will pause playing when leaving the current screen; if false (default option), the player
continues playing whenever the current screen is displaying or not.

Source

Volume

Sets the volume to a number between 0 and 100

EVENTS

Completed()

Indicates that the media has reached the end

OtherPlayerStarted()
This event is signaled when another player has started (and the current player is playing or paused, but not
stopped).

METHODS

Pause()

Suspends playing the media if it is playing.

Start()
Plays the media. If it was previously paused, the playing is resumed. If it was previously stopped, it starts from
the beginning.

Stop()
Stops playing the media and seeks to the beginning of the song.

Vibrate(number milliseconds)
Vibrates for specified number of milliseconds.

SOUND

A multimedia component that plays sound files and optionally vibrates for the number of milliseconds (thousandths of
a second) specified in the Blocks Editor. The name of the sound file to play can be specified either in the Designer or
in the Blocks Editor.

For supported sound file formats, see Android Supported Media Formats.
This Sound component is best for short sound files, such as sound effects, while the Player component is more efficient
for longer sounds, such as songs.

PROPERTIES

MinimumInterval

The minimum interval between sounds. If you play a sound, all further Play() calls will be ignored until the
interval has elapsed.

Source
The name of the sound file. Only certain formats are supported. See
http://developer.android.com/guide/appendix/media-formats.html.

EVENTS
none

METHODS

Pause()

Pauses playing the sound if it is being played.

Play()
Plays the sound.

Resume()
Resumes playing the sound after a pause.

Stop()
Stops playing the sound if it is being played.

Vibrate(number millisecs)
Vibrates for the specified number of milliseconds.

SOUNDRECORDER

Multimedia component that records audio.

PROPERTIES
none

EVENTS

AfterSoundRecorded(text sound)

Provides the location of the newly created sound.

StartedRecording()
Indicates that the recorder has started, and can be stopped.

StoppedRecording()
Indicates that the recorder has stopped, and can be started again.

METHODS

Start ()

Starts recording.

Stop ()
Stops recording.

SPEECHRECOGNIZER

Use a speech recognizer component to listen to the user speaking and convert the spoken sound into text using
Android's speech recognition feature.

PROPERTIES

Result

The last text produced by the recognizer.

METHODS

GetText()

Asks the user to speak, and converts the speech to text. Signals the AfterGettingText event when the result
is available.

EVENTS

AfterGetting(Text result)

Signaled after the recognizer has produced text. The argument is the text result that was produced.

BeforeGettingText()
Signaled just before the recognizer is called.

TEXTTOSPEECH

The TestToSpeech component speaks a given text aloud. You can set the pitch and the rate of speech.

You can also set a language by supplying a language code. This changes the pronounciation of words, not the actual
language spoken. For example, setting the language to French and speaking English text will sound like someone
speaking English (en) with a French accent.

You can also specify a country by supplying a country code. This can affect the pronounciation. For example, British
English (GBR) will sound different from US English (USA). Not every country code will affect every language.

The languages and countries available depend on the particular device, and can be listed with the
AvailableLanguages and AvailableCountries properties.

PROPERTIES

AVAILABLECOUNTRIES

List of the country codes available on this device for use with TextToSpeech. Check the Android developer
documentation under supported languages to find the meanings of these abbreviations.

AVAILABLELANGUAGES
List of the languages available on this device for use with TextToSpeech. Check the Android developer
documentation under supported languages to find the meanings of these abbreviations.

Country
Country code to use for speech generation. This can affect the pronounciation. For example, British English
(GBR) will sound different from US English (USA). Not every country code will affect every language.

Language
Sets the language for TextToSpeech. This changes the way that words are pronounced, not the actual
language that is spoken. For example setting the language to and speaking English text with sound like
someone speaking English with a Frernch accent.

Pitch
Sets the Pitch for TextToSpeech. The values should be between 0 and 2 where lower values lower the tone of
synthesized voice and greater values raise it.

RESULT
SpeechRate

Sets the SpeechRate for TextToSpeech. The values should be between 0 and 2 where lower values slow
down the pitch and greater values accelerate it.

EVENTS

AfterSpeaking(boolean result)

Event to raise after the message is spoken.

BeforeSpeaking()
Event to raise when Speak is invoked, before the message is spoken.

METHODS

Speak(text message)

Speaks the given message.

VIDEOPLAYER

A multimedia component capable of playing videos. When the application is run, the VideoPlayer will be displayed as
a rectangle on-screen. If the user touches the rectangle, controls will appear to play/pause, skip ahead, and skip
backward within the video. The application can also control behavior by calling the Start, Pause, and SeekTo methods.
Video files should be in 3GPP (.3gp) or MPEG-4 (.mp4) formats. For more details about legal formats, see Android
Supported Media Formats.

App Inventor for Android only permits video files under 1 MB and limits the total size of an application to 5 MB, not all
of which is available for media (video, audio, and sound) files. If your media files are too large, you may get errors
when packaging or installing your application, in which case you should reduce the number of media files or their
sizes. Most video editing software, such as Windows Movie Maker and Apple iMovie, can help you decrease the size
of videos by shortening them or re-encoding the video into a more compact format.

You can also set the media source to a URL that points to a streaming video, but the URL must point to the video file
itself, not to a program that plays the video.

PROPERTIES

FullScreen

Height

Source

The "path" to the video. Usually, this will be the name of the video file, which should be added in the Designer.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Volume
Sets the volume to a number between 0 and 100. Values less than 0 will be treated as 0, and values greater
than 100 will be treated as 100.

Width

EVENTS

Completed()

Indicates that the video has reached the end

METHODS

number GetDuration()

Returns duration of the video in milliseconds.

Pause()
Pauses playback of the video. Playback can be resumed at the same location by calling the Start method.

SeekTo(number ms)

Seeks to the requested time (specified in milliseconds) in the video. Note that if the video is paused, the frame
shown will not be updated by the seek.

Start()
Starts playback of the video.

YANDEXTRANSLATE

Use this component to translate words and sentences between different languages. This component needs Internet
access, as it will request translations to the Yandex.Translate service. Specify the source and target language in the
form source-target using two letter language codes. So"en-es" will translate from English to Spanish while "es-ru" will
translate from Spanish to Russian. If you leave out the source language, the service will attempt to detect the source
language. So providing just "es" will attempt to detect the source language and translate it to Spanish.

This component is powered by the Yandex translation service. See http://api.yandex.com/translate/ for more
information, including the list of available languages and the meanings of the language codes and status codes.

Note: Translation happens asynchronously in the background. When the translation is complete, the "GotTranslation"
event is triggered.

PROPERTIES
none

EVENTS

GotTranslation(text responseCode, text translation)

Event triggered when the Yandex.Translate service returns the translated text. This event also provides a
response code for error handling. If the responseCode is not 200, then something went wrong with the call,
and the translation will not be available.

METHODS

RequestTranslation(text languageToTranslateTo, text textToTranslate)

By providing a target language to translate to (for instance, 'es' for Spanish, 'en' for English, or 'ru' for
Russian), and a word or sentence to translate, this method will request a translation to the Yandex.Translate
service. Once the text is translated by the external service, the event GotTranslation will be executed. Note:
Yandex.Translate will attempt to detect the source language. You can also specify prepending it to the
language translation. I.e., es-ru will specify Spanish to Russian translation.

DRAWING AND ANIMATION COMPONENTS - APP INVENTOR FOR
ANDROID

TABLE OF CONTENTS

 Ball
 Canvas
 ImageSprite

BALL

A round 'sprite' that can be placed on a Canvas, where it can react to touches and drags, interact with other sprites
(ImageSprites and other Balls) and the edge of the Canvas, and move according to its property values.
For example, to have a Ball move 4 pixels toward the top of a Canvas every 500 milliseconds (half second), you would
set the Speed property to 4 [pixels], theInterval property to 500 [milliseconds], the Heading property to 90 [degrees],
and the Enabled property to True. These and its other properties can be changed at any time.
The difference between a Ball and an ImageSprite is that the latter can get its appearance from an image file, while a
Ball's appearance can only be changed by varying its PaintColor and Radius properties.

PROPERTIES

Enabled

Controls whether the sprite moves when its speed is non-zero.

Heading
Returns the sprite's heading in degrees above the positive x-axis. Zero degrees is toward the right of the
screen; 90 degrees is toward the top of the screen.

Interval

The interval in milliseconds at which the sprite's position is updated. For example, if the interval is 50 and the
speed is 10, then the sprite will move 10 pixels every 50 milliseconds.

PaintColor

Radius

Speed

The speed at which the sprite moves. The sprite moves this many pixels every interval.

Visible

True if the sprite is visible.

X

The horizontal coordinate of the left edge of the sprite, increasing as the sprite moves to the right.

Y

The vertical coordinate of the top of the sprite, increasing as the sprite moves down.

Z

How the sprite should be layered relative to other sprits, with higher-numbered layers in front of lower-
numbered layers.

EVENTS

CollidedWith(component other)

Handler for CollidedWith events, called when two sprites collide. Note that checking for collisions with a
rotated ImageSprite currently checks against the sprite's unrotated position. Therefore, collision checking will
be inaccurate for tall narrow or short wide sprites that are rotated.

Dragged(number startX, number startY, number prevX, number prevY, number currentX, number
currentY)

Handler for Dragged events. On all calls, the starting coordinates are where the screen was first touched, and
the "current" coordinates describe the endpoint of the current line segment. On the first call within a given
drag, the "previous" coordinates are the same as the starting coordinates; subsequently, they are the "current"
coordinates from the prior call. Note that the Sprite won't actually move anywhere in response to the Dragged
event unless MoveTo is specifically called.

EdgeReached(number edge)
Event handler called when the sprite reaches an edge of the screen. If Bounce is then called with that edge,
the sprite will appear to bounce off of the edge it reached. Edge here is represented as an integer that
indicates one of eight directions north(1), northeast(2), east(3), southeast(4), south (-1), southwest(-2), west(-
3), and northwest(-4).

Flung(number x, number y, number speed, number heading, number xvel, number yvel)
When a fling gesture (quick swipe) is made on the sprite: provides the (x,y) position of the start of the fling,
relative to the upper left of the canvas. Also provides the speed (pixels per millisecond) and heading (0-360
degrees) of the fling, as well as the x velocity and y velocity components of the fling's vector.

NoLongerCollidingWith(component other)
Event indicating that a pair of sprites are no longer colliding.

TouchDown(number x, number y)
When the user begins touching the sprite (places finger on sprite and leaves it there): provides the (x,y)
position of the touch, relative to the upper left of the canvas

TouchUp(number x, number y)
When the user stops touching the sprite (lifts finger after a TouchDown event): provides the (x,y) position of
the touch, relative to the upper left of the canvas

Touched(number x, number y)
When the user touches the sprite and then immediately lifts finger: provides the (x,y) position of the touch,
relative to the upper left of the canvas

METHODS

Bounce(number edge)

Makes this sprite bounce, as if off a wall. For normal bouncing, the edge argument should be the one returned
by EdgeReached.

boolean CollidingWith(component other)

Indicates whether a collision has been registered between this sprite and the passed sprite.

MoveIntoBounds()

Moves the sprite back in bounds if part of it extends out of bounds, having no effect otherwise. If the sprite is
too wide to fit on the canvas, this aligns the left side of the sprite with the left side of the canvas. If the sprite is
too tall to fit on the canvas, this aligns the top side of the sprite with the top side of the canvas.

MoveTo(number x, number y)
Moves the sprite so that its left top corner is at the specfied x and y coordinates.

PointInDirection(number x, number y)

Turns the sprite to point towards the point with coordinates as (x, y).

PointTowards(component target)

Turns the sprite to point towards a designated target sprite. The new heading will be parallel to the line joining
the centerpoints of the two sprites.

CANVAS

A two-dimensional touch-sensitive rectangular panel on which drawing can be done and sprites can be moved.

The BackgroundColor, PaintColor, BackgroundImage, Width, and Height of the Canvas can be set in either the Designer
or in the Blocks Editor. The Width and Height are measured in pixels and must be positive.

Any location on the Canvas can be specified as a pair of (X, Y) values, where

 X is the number of pixels away from the left edge of the Canvas
 Y is the number of pixels away from the top edge of the Canvas

.
There are events to tell when and where a Canvas has been touched or a Sprite (ImageSprite or Ball) has been
dragged. There are also methods for drawing points, lines, and circles.

PROPERTIES

BackgroundColor

The color of the canvas background.

BackgroundImage
The name of a file containing the background image for the canvas

FontSize
The font size of text drawn on the canvas.

Height
LineWidth

The width of lines drawn on the canvas.

PaintColor
The color in which lines are drawn

TextAlignment
Determines the alignment of the text drawn by DrawText() or DrawAngle() with respect to the point specified
by that command.

Visible

Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

Dragged(number startX, number startY, number prevX, number prevY, number currentX, number
currentY, boolean draggedSprite)

When the user does a drag from one point (prevX, prevY) to another (x, y). The pair (startX, startY) indicates
where the user first touched the screen, and "draggedSprite" indicates whether a sprite is being dragged.

Flung(number x, number y, number speed, number heading, number xvel, number yvel, boolean
flungSprite)

When a fling gesture (quick swipe) is made on the canvas: provides the (x,y) position of the start of the fling,
relative to the upper left of the canvas. Also provides the speed (pixels per millisecond) and heading (0-360
degrees) of the fling, as well as the x velocity and y velocity components of the fling's vector. The value
"flungSprite" is true if a sprite was located near the the starting point of the fling gesture.

TouchDown(number x, number y)
When the user begins touching the canvas (places finger on canvas and leaves it there): provides the (x,y)
position of the touch, relative to the upper left of the canvas

TouchUp(number x, number y)
When the user stops touching the canvas (lifts finger after a TouchDown event): provides the (x,y) position of
the touch, relative to the upper left of the canvas

Touched(number x, number y, boolean touchedSprite)
When the user touches the canvas and then immediately lifts finger: provides the (x,y) position of the touch,
relative to the upper left of the canvas. TouchedSprite is true if the same touch also touched a sprite, and
false otherwise.

METHODS

Clear()

Clears anything drawn on this Canvas but not any background color or image.

DrawCircle(number x, number y, number r)
Draws a circle (filled in) at the given coordinates on the canvas, with the given radius.

DrawLine(number x1, number y1, number x2, number y2)
Draws a line between the given coordinates on the canvas.

DrawPoint(number x, number y)
Draws a point at the given coordinates on the canvas.

DrawText(text text, number x, number y)
Draws the specified text relative to the specified coordinates using the values of the FontSize and
TextAlignment properties.

DrawTextAtAngle(text text, number x, number y, number angle)
Draws the specified text starting at the specified coordinates at the specified angle using the values of the
FontSize and TextAlignment properties.

number GetBackgroundPixelColor(number x, number y)

Gets the color of the specified point. This includes the background and any drawn points, lines, or circles but
not sprites.

number GetPixelColor(number x, number y)
Gets the color of the specified point.

text Save()
Saves a picture of this Canvas to the device's external storage. If an error occurs, the Screen's ErrorOccurred
event will be called.

text SaveAs(text fileName)
Saves a picture of this Canvas to the device's external storage in the file named fileName. fileName must end
with one of .jpg, .jpeg, or .png, which determines the file type.

SetBackgroundPixelColor(number x, number y, number color)
Sets the color of the specified point. This differs from DrawPoint by having an argument for color.

IMAGESPRITE

A 'sprite' that can be placed on a Canvas, where it can react to touches and drags, interact with other sprites (Balls and
other ImageSprites) and the edge of the Canvas, and move according to its property values. Its appearance is that of
the image specified in its Picture property (unless its Visible property is False.
To have an ImageSprite move 10 pixels to the left every 1000 milliseconds (one second), for example, you would set
the Speed property to 10 [pixels], the Intervalproperty to 1000 [milliseconds], the Heading property to 180 [degrees],
and the Enabled property to True. A sprite whose Rotates property is True will rotate its image as the
sprite's Heading changes. Checking for collisions with a rotated sprite currently checks the sprite's unrotated position
so that collision checking will be inaccurate for tall narrow or short wide sprites that are rotated. Any of the sprite
properties can be changed at any time under program control.

PROPERTIES

Enabled

Controls whether the sprite moves when its speed is non-zero.

Heading
Returns the sprite's heading in degrees above the positive x-axis. Zero degrees is toward the right of the
screen; 90 degrees is toward the top of the screen.

Height

Interval

The interval in milliseconds at which the sprite's position is updated. For example, if the interval is 50 and the
speed is 10, then the sprite will move 10 pixels every 50 milliseconds.

Picture

The picture that determines the sprite's appearence

Rotates
If true, the sprite image rotates to match the sprite's heading. If false, the sprite image does not rotate when
the sprite changes heading. The sprite rotates around its centerpoint.

Speed
The speed at which the sprite moves. The sprite moves this many pixels every interval.

Visible

True if the sprite is visible.

Width

X

The horizontal coordinate of the left edge of the sprite, increasing as the sprite moves to the right.

Y

The vertical coordinate of the top of the sprite, increasing as the sprite moves down.

Z

How the sprite should be layered relative to other sprits, with higher-numbered layers in front of lower-
numbered layers.

EVENTS

CollidedWith(component other)

Handler for CollidedWith events, called when two sprites collide. Note that checking for collisions with a
rotated ImageSprite currently checks against the sprite's unrotated position. Therefore, collision checking will
be inaccurate for tall narrow or short wide sprites that are rotated.

Dragged(number startX, number startY, number prevX, number prevY, number currentX, number
currentY)

Handler for Dragged events. On all calls, the starting coordinates are where the screen was first touched, and
the "current" coordinates describe the endpoint of the current line segment. On the first call within a given
drag, the "previous" coordinates are the same as the starting coordinates; subsequently, they are the "current"
coordinates from the prior call. Note that the Sprite won't actually move anywhere in response to the Dragged
event unless MoveTo is specifically called.

EdgeReached(number edge)
Event handler called when the sprite reaches an edge of the screen. If Bounce is then called with that edge,
the sprite will appear to bounce off of the edge it reached. Edge here is represented as an integer that
indicates one of eight directions north(1), northeast(2), east(3), southeast(4), south (-1), southwest(-2), west(-
3), and northwest(-4).

Flung(number x, number y, number speed, number heading, number xvel, number yvel)
When a fling gesture (quick swipe) is made on the sprite: provides the (x,y) position of the start of the fling,
relative to the upper left of the canvas. Also provides the speed (pixels per millisecond) and heading (0-360
degrees) of the fling, as well as the x velocity and y velocity components of the fling's vector.

NoLongerCollidingWith(component other)
Event indicating that a pair of sprites are no longer colliding.

TouchDown(number x, number y)
When the user begins touching the sprite (places finger on sprite and leaves it there): provides the (x,y)
position of the touch, relative to the upper left of the canvas

TouchUp(number x, number y)
When the user stops touching the sprite (lifts finger after a TouchDown event): provides the (x,y) position of
the touch, relative to the upper left of the canvas

Touched(number x, number y)

When the user touches the sprite and then immediately lifts finger: provides the (x,y) position of the touch,
relative to the upper left of the canvas

METHODS

Bounce(number edge)

Makes this sprite bounce, as if off a wall. For normal bouncing, the edge argument should be the one returned
by EdgeReached.

boolean CollidingWith(component other)

Indicates whether a collision has been registered between this sprite and the passed sprite.

MoveIntoBounds()
Moves the sprite back in bounds if part of it extends out of bounds, having no effect otherwise. If the sprite is
too wide to fit on the canvas, this aligns the left side of the sprite with the left side of the canvas. If the sprite is
too tall to fit on the canvas, this aligns the top side of the sprite with the top side of the canvas.

MoveTo(number x, number y)
Moves the sprite so that its left top corner is at the specfied x and y coordinates.

PointInDirection(number x, number y)

Turns the sprite to point towards the point with coordinates as (x, y).

PointTowards(component target)

Turns the sprite to point towards a designated target sprite. The new heading will be parallel to the line joining
the centerpoints of the two sprites.

SENSOR COMPONENTS - APP INVENTOR FOR ANDROID

TABLE OF CONTENTS

 AccelerometerSensor
 BarcodeScanner
 Clock
 LocationSensor
 NearField
 OrientationSensor
 ProximitySensor

ACCELEROMETERSENSOR

Non-visible component that can detect shaking and measure acceleration approximately in three dimensions using SI
units (m/s2). The components are:

 xAccel: 0 when the phone is at rest on a flat surface, positive when the phone is tilted to the right (i.e., its left
side is raised), and negative when the phone is tilted to the left (i.e., its right size is raised).

 yAccel: 0 when the phone is at rest on a flat surface, positive when its bottom is raised, and negative when its
top is raised.

 zAccel: Equal to -9.8 (earth's gravity in meters per second per second when the device is at rest parallel to
the ground with the display facing up, 0 when perpindicular to the ground, and +9.8 when facing down. The
value can also be affected by accelerating it with or against gravity.

PROPERTIES

AVAILABLE

Enabled

MinimumInterval

The minimum interval between phone shakes

Sensitivity
A number that encodes how sensitive the accelerometer is. The choices are: 1 = weak, 2 = moderate, 3 =
strong.

XACCEL
YACCEL

ZACCEL

EVENTS

AccelerationChanged(number xAccel, number yAccel, number zAccel)

Indicates the acceleration changed in the X, Y, and/or Z dimensions.

Shaking()
Indicates the device started being shaken or continues to be shaken.

METHODS
none

BARCODESCANNER

Component for using the Barcode Scanner to read a barcode

PROPERTIES

RESULT

Text result of the previous scan.

USEEXTERNALSCANNER
If true App Inventor will look for and use an external scanning program such as "Bar Code Scanner."

EVENTS

AfterScan(text result)

Indicates that the scanner has read a (text) result and provides the result

METHODS

DoScan()

Begins a barcode scan, using the camera. When the scan is complete, the AfterScan event will be raised.

CLOCK

Non-visible component that provides the instant in time using the internal clock on the phone.It can fire a timer at
regularly set intervals and perform time calculations, manipulations, and conversions.

Methods to convert an instant to text are also available. Acceptable patterns are empty string, MM/DD/YYYY
HH:mm:ss a, or MMM d, yyyy HH:mm. The empty string will provide the default format, which is "MMM d, yyyy
HH:mm:ss a" for FormatDateTime, "MMM d, yyyy" for FormatDate. To see all possible format, please see here.

PROPERTIES

TimerAlwaysFires

Will fire even when application is not showing on the screen if true

TimerEnabled
Fires timer if true

TimerInterval
Interval between timer events in ms

EVENTS

Timer()

Timer has gone off.

METHODS

InstantInTime AddDays(InstantInTime instant, number days)

An instant in time some days after the argument

InstantInTime AddHours(InstantInTime instant, number hours)
An instant in time some hours after the argument

InstantInTime AddMinutes(InstantInTime instant, number minutes)
An instant in time some minutes after the argument

InstantInTime AddMonths(InstantInTime instant, number months)
An instant in time some months after the argument

InstantInTime AddSeconds(InstantInTime instant, number seconds)
An instant in time some seconds after the argument

InstantInTime AddWeeks(InstantInTime instant, number weeks)
An instant in time some weeks after the argument

InstantInTime AddYears(InstantInTime instant, number years)
An instant in time some years after the argument

number DayOfMonth(InstantInTime instant)
The day of the month

number Duration(InstantInTime start, InstantInTime end)
Milliseconds elapsed between instants

text FormatDate(InstantInTime instant, text pattern)
Text representing the date of an instant in the specified pattern

text FormatDateTime(InstantInTime instant, text pattern)
Text representing the date and time of an instant in the specified pattern

text FormatTime(InstantInTime instant)
Text representing the time of an instant

number GetMillis(InstantInTime instant)
The instant in time measured as milliseconds since 1970.

number Hour(InstantInTime instant)
The hour of the day

InstantInTime MakeInstant(text from)
An instant in time specified by MM/DD/YYYY hh:mm:ss or MM/DD/YYYY or hh:mm

InstantInTime MakeInstantFromMillis(number millis)
An instant in time specified by the milliseconds since 1970.

number Minute(InstantInTime instant)
The minute of the hour

number Month(InstantInTime instant)

The month of the year represented as a number from 1 to 12)

text MonthName(InstantInTime instant)
The name of the month

InstantInTime Now()
The current instant in time read from phone's clock

number Second(InstantInTime instant)
The second of the minute

number SystemTime()
The phone's internal time

number Weekday(InstantInTime instant)
The day of the week represented as a number from 1 (Sunday) to 7 (Saturday)

text WeekdayName(InstantInTime instant)
The name of the day of the week

number Year(InstantInTime instant)
The year

LOCATIONSENSOR

Non-visible component providing location information, including longitude, latitude, altitude (if supported by the
device), and address. This can also perform "geocoding", converting a given address (not necessarily the current one)
to a latitude (with the LatitudeFromAddress method) and a longitude (with theLongitudeFromAddress method).
In order to function, the component must have its Enabled property set to True, and the device must have location
sensing enabled through wireless networks or GPS satellites (if outdoors).
Location information might not be immediately available when an app starts. You'll have to wait a short time for a
location provider to be found and used, or wait for the OnLocationChanged event

PROPERTIES

ACCURACY

ALTITUDE

AVAILABLEPROVIDERS

CURRENTADDRESS

DistanceInterval

Determines the minimum distance interval, in meters, that the sensor will try to use for sending out location
updates. For example, if this is set to 5, then the sensor will fire a LocationChanged event only after 5 meters
have been traversed. However, the sensor does not guarantee that an update will be received at exactly the
distance interval. It may take more than 5 meters to fire an event, for instance.

Enabled
HASACCURACY

HASALTITUDE

HASLONGITUDELATITUDE

LATITUDE

LONGITUDE

ProviderLocked

ProviderName

TimeInterval

Determines the minimum time interval, in milliseconds, that the sensor will try to use for sending out location
updates. However, location updates will only be received when the location of the phone actually changes,
and use of the specified time interval is not guaranteed. For example, if 1000 is used as the time interval,
location updates will never be fired sooner than 1000ms, but they may be fired anytime after.

EVENTS

LocationChanged(number latitude, number longitude, number altitude)

Indicates that a new location has been detected.

StatusChanged(text provider, text status)
Indicates that the status of the location provider service has changed, such as when a provider is lost or a
new provider starts being used.

METHODS

number LatitudeFromAddress(text locationName)

Derives latitude of given address

number LongitudeFromAddress(text locationName)
Derives longitude of given address

NEARFIELD

Non-visible component to provide NFC capabilities. For now this component supports the reading and writing of text
tags only (if supported by the device)

In order to read and write text tags, the component must have its ReadMode property set to True or False respectively.

PROPERTIES

LASTMESSAGE

ReadMode

TextToWrite

WRITETYPE

EVENTS

TagRead(text message)

Indicates that a new tag has been detected. Currently this is only a plain text tag, as specified in the manifest.
See Compiler.java.

TagWritten()
Event for TagWritten

METHODS
none

ORIENTATIONSENSOR

Use an orientation sensor component to determine the phone's spatial orientation.

An orientation sensor is a non-visible component that reports the following three values, in degrees:

 Roll : 0 degree when the device is level, increasing to 90 degrees as the device is tilted up onto its left side,
and decreasing to −90 degrees when the device is tilted up onto its right side.

 Pitch : 0 degree when the device is level, increasing to 90 degrees as the device is tilted so its top is pointing
down, then decreasing to 0 degree as it gets turned over. Similarly, as the device is tilted so its bottom points
down, pitch decreases to −90 degrees, then increases to 0 degree as it gets turned all the way over.

 Azimuth : 0 degree when the top of the device is pointing north, 90 degrees when it is pointing east, 180
degrees when it is pointing south, 270 degrees when it is pointing west, etc.

These measurements assume that the device itself is not moving.

PROPERTIES

Available

Indicates whether the orientation sensor is present on the Android device.

Enabled
If set, the orientation sensor is enabled.

Azimuth
Returns the azimuth angle of the device.

Pitch
Returns the pitch angle of the device.

Roll
Returns the roll angle of the device.

Magnitude
Returns a number between 0 and 1 that indicates how much the device is tilted. It gives the magnitude of the
force that would be felt by a ball rolling on the surface of the device.

Angle

Returns an angle that tells the direction in which the device is tiled. That is, it tells the direction of the force
that would be felt by a ball rolling on the surface of the device.

EVENTS

OrientationChanged(number azimuth, number pitch, number roll)

Called when the orientation has changed.

PROXIMITYSENSOR

A sensor component that can measure the proximity of an object (in cm) relative to the view screen of a device. This
sensor is typically used to determine whether a handset is being held up to a persons ear; i.e. lets you determine how
far away an object is from a device. Many devices return the absolute distance, in cm, but some return only near and
far values. In this case, the sensor usually reports its maximum range value in the far state and a lesser value in the
near state. It reports the following value:

 Distance: The distance from the object to the device

PROPERTIES

Available

Reports whether or not the device has a proximity sensor

Enabled
If enabled, then device will listen for changes in proximity

KeepRunningWhenOnPause
If set to true, it will keep sensing for proximity changes even when the app is not visible

Distance
Returns the distance from the object to the device

MaximumRange
Reports the Maximum Range of the device's ProximitySensor.

EVENTS

ProximityChanged(number distance)

Called when distance (in cm) of the object to the device changes.

SOCIAL COMPONENTS - APP INVENTOR FOR ANDROID

TABLE OF CONTENTS

 ContactPicker
 EmailPicker
 PhoneCall
 PhoneNumberPicker
 Sharing
 Texting
 Twitter

CONTACTPICKER

A button that, when clicked on, displays a list of the contacts to choose among. After the user has made a selection,
the following properties will be set to information about the chosen contact:

 ContactName: the contact's name
 EmailAddress: the contact's primary email address
 EmailAddressList: a list of the contact's email addresses
 PhoneNumber: the contact's primary phone number (on Later Android Verisons)
 PhoneNumberList: a list of the contact's phone numbers (on Later Android Versions)
 Picture: the name of the file containing the contact's image, which can be used as a Picture property value for

the Image or ImageSprite component.

Other properties affect the appearance of the button (TextAlignment, BackgroundColor, etc.) and whether it can be
clicked on (Enabled).

The ContactPicker component might not work on all phones. For example, on Android systems before system 3.0, it
cannot pick phone numbers, and the list of email addresses will contain only one email.

PROPERTIES

BackgroundColor

Returns the button's background color

CONTACTNAME
EMAILADDRESS

Enabled

FontBold (designer only)

FontItalic (designer only)

FontSize (designer only)

FontTypeface (designer only)

Height

Image

Specifies the path of the button's image. If there is both an Image and a BackgroundColor, only the Image will
be visible.

PICTURE
Shape (designer only)

Specifies the button's shape (default, rounded, rectangular, oval). The shape will not be visible if an Image is
being displayed.

ShowFeedback
Specifies if a visual feedback should be shown for a button that as an image as background.

Text
TextAlignment (designer only)

TextColor

Visible

Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

AfterPicking()

Simple event to be raised after the picker activity returns its result and the properties have been filled in.

BeforePicking()
Simple event to raise when the component is clicked but before the picker activity is started.

GotFocus()
Indicates the cursor moved over the button so it is now possible to click it.

LostFocus()
Indicates the cursor moved away from the button so it is now no longer possible to click it.

METHODS

Open()

Opens the picker, as though the user clicked on it.

EMAILPICKER

An EmailPicker is a kind of text box. If the user begins entering the name or email address of a contact, the phone will
show a dropdown menu of choices that complete the entry. If there are many contacts, the dropdown can take several
seconds to appear, and can show intermediate results while the matches are being computed.

The initial contents of the text box and the contents< after user entry is in the Text property. If the Text property is
initially empty, the contents of the Hint property will be faintly shown in the text box as a hint to the user.
Other properties affect the appearance of the text box (TextAlignment, BackgroundColor, etc.) and whether it can be
used (Enabled).

Text boxes like this are usually used with Button components, with the user clicking on the button when text entry is
complete.

METHODS

RequestFocus()

Sets the EmailPicker active.

PROPERTIES

BackgroundColor

The background color of the input box. You can choose a color by name in the Designer or in the Blocks
Editor. The default background color is 'default' (shaded 3-D look).

Enabled
Whether the user can enter text into this input box. By default, this is true.

FontBold (designer only)
Whether the font for the text should be bold. By default, it is not.

FontItalic (designer only)
Whether the text should appear in italics. By default, it does not.

FontSize
The font size for the text. By default, it is 14.0 points.

FontTypeface (designer only)
The font for the text. The value can be changed in the Designer.

Height
Hint

Text that should appear faintly in the input box to provide a hint as to what the user should enter. This can
only be seen if the Text property is empty.

Text

The text in the input box, which can be set by the programmer in the Designer or Blocks Editor, or it can be
entered by the user (unless the Enabled property is false).

TextAlignment (designer only)

Whether the text should be left justified, centered, or right justified. By default, text is left justified.

TextColor
The color for the text. You can choose a color by name in the Designer or in the Blocks Editor. The default
text color is black.

Visible
Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

GotFocus()

Event raised when this component is selected for input, such as by the user touching it.

LostFocus()
Event raised when this component is no longer selected for input, such as if the user touches a different text
box.

METHODS
none

PHONECALL

A non-visible component that makes a phone call to the number specified in the PhoneNumber property, which can be
set either in the Designer or Blocks Editor. The component has a MakePhoneCall method, enabling the program to
launch a phone call.
Often, this component is used with the ContactPicker component, which lets the user select a contact from the ones
stored on the phone and sets the PhoneNumberproperty to the contact's phone number.
To directly specify the phone number (e.g., 650-555-1212), set the PhoneNumber property to a Text with the specified
digits (e.g., "6505551212"). Dashes, dots, and parentheses may be included (e.g., "(650)-555-1212") but will be
ignored; spaces may not be included.

PROPERTIES

PhoneNumber

EVENTS

IncomingCallAnswered(text phoneNumber)

Event indicating that an incoming phone call is answered. phoneNumber is the incoming call phone number.

PhoneCallEnded(number status, text phoneNumber)
Event indicating that a phone call has ended. If status is 1, incoming call is missed or rejected; if status is 2,
incoming call is answered before hanging up; if status is 3, outgoing call is hung up. phoneNumber is the
ended call phone number.

PhoneCallStarted(number status, text phoneNumber)
Event indicating that a phonecall has started. If status is 1, incoming call is ringing; if status is 2, outgoing call
is dialled. phoneNumber is the incoming/outgoing phone number.

METHODS

MakePhoneCall()

Makes a phone call using the number in the PhoneNumber property.

PHONENUMBERPICKER

A button that, when clicked on, displays a list of the contacts' phone numbers to choose among. After the user has
made a selection, the following properties will be set to information about the chosen contact:

 ContactName: the contact's name
 PhoneNumber: the contact's phone number
 EmailAddress: the contact's email address
 Picture: the name of the file containing the contact's image, which can be used as a Picture property value for

the Image or ImageSprite component.

Other properties affect the appearance of the button (TextAlignment, BackgroundColor, etc.) and whether it can be
clicked on (Enabled).

The PhoneNumberPicker component may not work on all Android devices. For example, on Android systems before
system 3.0, the returned lists of phone numbers and email addresses will be empty.

PROPERTIES

BackgroundColor

Returns the button's background color

CONTACTNAME
EMAILADDRESS

Enabled

FontBold (designer only)

FontItalic (designer only)

FontSize (designer only)

FontTypeface (designer only)

Height

Image

Specifies the path of the button's image. If there is both an Image and a BackgroundColor, only the Image will
be visible.

PHONENUMBER
PICTURE

Shape (designer only)

Specifies the button's shape (default, rounded, rectangular, oval). The shape will not be visible if an Image is
being displayed.

ShowFeedback
Specifies if a visual feedback should be shown for a button that as an image as background.

Text
TextAlignment (designer only)

TextColor

Visible

Specifies whether the component should be visible on the screen. Value is true if the component is showing
and false if hidden.

Width

EVENTS

AfterPicking()

Simple event to be raised after the picker activity returns its result and the properties have been filled in.

BeforePicking()
Simple event to raise when the component is clicked but before the picker activity is started.

GotFocus()
Indicates the cursor moved over the button so it is now possible to click it.

LostFocus()
Indicates the cursor moved away from the button so it is now no longer possible to click it.

METHODS

Open()

Opens the picker, as though the user clicked on it.

SHARING

Sharing is a non-visible component that enables sharing files and/or messages between your app and other apps
installed on a device. The component will display a list of the installed apps that can handle the information provided,
and will allow the user to choose one to share the content with, for instance a mail app, a social network app, a texting
app, and so on.
The file path can be taken directly from other components such as the Camera or the ImagePicker, but can also be
specified directly to read from storage. Be aware that different devices treat storage differently, so a few things to try if,
for instance, you have a file called arrow.gif in the folder Appinventor/assets, would be:

 "file:///sdcard/Appinventor/assets/arrow.gif"

or

 "/storage/Appinventor/assets/arrow.gif"

PROPERTIES
none

EVENTS
none

METHODS

ShareFile(text file)

Shares a file through any capable application installed on the phone by displaying a list of the available apps
and allowing the user to choose one from the list. The selected app will open with the file inserted on it.

ShareFileWithMessage(text file, text message)
Shares both a file and a message through any capable application installed on the phone by displaying a list
of available apps and allowing the user to choose one from the list. The selected app will open with the file
and message inserted on it.

ShareMessage(text message)
Shares a message through any capable application installed on the phone by displaying a list of the available
apps and allowing the user to choose one from the list. The selected app will open with the message inserted
on it.

TEXTING

A component that will, when the SendMessage method is called, send the text message specified in the Message property
to the phone number specified in thePhoneNumber property.
If the ReceivingEnabled property is set to 1 messages will not be received. If ReceivingEnabled is set to 2 messages will
be received only when the application is running. Finally if ReceivingEnabled is set to 3, messages will be received
when the application is running and when the application is not running they will be queued and a notification
displayed to the user.
When a message arrives, the MessageReceived event is raised and provides the sending number and message.

An app that includes this component will receive messages even when it is in the background (i.e. when it's not visible
on the screen) and, moreso, even if the app is not running, so long as it's installed on the phone. If the phone receives
a text message when the app is not in the foreground, the phone will show a notification in the notification bar.
Selecting the notification will bring up the app. As an app developer, you'll probably want to give your users the ability
to control ReceivingEnabled so that they can make the phone ignore text messages.

If the GoogleVoiceEnabled property is true, messages can be sent over Wifi using Google Voice. This option requires
that the user have a Google Voice account and that the mobile Voice app is installed on the phone. The Google Voice
option works only on phones that support Android 2.0 (Eclair) or higher.

To specify the phone number (e.g., 650-555-1212), set the PhoneNumber property to a Text string with the specified
digits (e.g., 6505551212). Dashes, dots, and parentheses may be included (e.g., (650)-555-1212) but will be ignored;
spaces may not be included.
Another way for an app to specify a phone number would be to include a PhoneNumberPicker component, which lets the
users select a phone numbers from the ones stored in the the phone's contacts.

PROPERTIES

GoogleVoiceEnabled

If true, then SendMessage will attempt to send messages over Wifi using Google Voice. This requires that the
Google Voice app must be installed and set up on the phone or tablet, with a Google Voice account. If
GoogleVoiceEnabled is false, the device must have phone and texting service in order to send or receive
messages with this component.

Message
The message that will be sent when the SendMessage method is called.

PhoneNumber
The number that the message will be sent to when the SendMessage method is called. The number is a text
string with the specified digits (e.g., 6505551212). Dashes, dots, and parentheses may be included (e.g.,
(650)-555-1212) but will be ignored; spaces should not be included.

ReceivingEnabled
If set to 1 (OFF) no messages will be received. If set to 2 (FOREGROUND) or3 (ALWAYS) the component will
respond to messages if it is running. If theapp is not running then the message will be discarded if set to
2(FOREGROUND). If set to 3 (ALWAYS) and the app is not running the phone willshow a notification.
Selecting the notification will bring up the appand signal the MessageReceived event. Messages received
when the appis dormant will be queued, and so several MessageReceived events mightappear when the app
awakens. As an app developer, it would be a good idea to give your users control over this property, so they
can maketheir phones ignore text messages when your app is installed.

EVENTS

MessageReceived(text number, text messageText)

Event that's raised when a text message is received by the phone.

METHODS

SendMessage()

Send a text message

TWITTER

A non-visible component that enables communication with Twitter. Once a user has logged into their Twitter account
(and the authorization has been confirmed successful by the IsAuthorized event), many more operations are
available:

 Searching Twitter for tweets or labels (SearchTwitter)
 Sending a Tweet (Tweet)
 Sending a Tweet with an Image (TweetWithImage)
 Directing a message to a specific user (DirectMessage)
 Receiving the most recent messages directed to the logged-in user (RequestDirectMessages)
 Following a specific user (Follow)
 Ceasing to follow a specific user (StopFollowing)
 Getting a list of users following the logged-in user (RequestFollowers)
 Getting the most recent messages of users followed by the logged-in user (RequestFriendTimeline)
 Getting the most recent mentions of the logged-in user (RequestMentions)

You must obtain a Consumer Key and Consumer Secret for Twitter authorization specific to your app from
http://twitter.com/oauth_clients/new

PROPERTIES

ConsumerKey

The the consumer key to be used when authorizing with Twitter via OAuth.

ConsumerSecret

The consumer secret to be used when authorizing with Twitter via OAuth

DIRECTMESSAGES
This property contains a list of the most recent messages mentioning the logged-in user. Initially, the list is
empty. To set it, the program must:

1. Call the Authorize method.
2. Wait for the Authorized event.
3. Call the RequestDirectMessages method.
4. Wait for the DirectMessagesReceived event.

The value of this property will then be set to the list of direct messages retrieved (and maintain that value until
any subsequent call to RequestDirectMessages).

FOLLOWERS

This property contains a list of the followers of the logged-in user. Initially, the list is empty. To set it, the
program must:

1. Call the Authorize method.
2. Wait for the IsAuthorized event.
3. Call the RequestFollowers method.
4. Wait for the FollowersReceived event.

The value of this property will then be set to the list of followers (and maintain its value until any subsequent
call to RequestFollowers).

FRIENDTIMELINE

This property contains the 20 most recent messages of users being followed. Initially, the list is empty. To set
it, the program must:

1. Call the Authorize method.
2. Wait for the IsAuthorized event.
3. Specify users to follow with one or more calls to the Follow method.
4. Call the RequestFriendTimeline method.
5. Wait for the FriendTimelineReceived event.

The value of this property will then be set to the list of messages (and maintain its value until any subsequent
call to RequestFriendTimeline.

MENTIONS

This property contains a list of mentions of the logged-in user. Initially, the list is empty. To set it, the program
must:

1. Call the Authorize method.
2. Wait for the IsAuthorized event.
3. Call the RequestMentions method.
4. Wait for the MentionsReceived event.

The value of this property will then be set to the list of mentions (and will maintain its value until any
subsequent calls to RequestMentions).

SEARCHRESULTS

This property, which is initially empty, is set to a list of search results after the program:

1. Calls the SearchTwitter method.
2. Waits for the SearchSuccessful event.

The value of the property will then be the same as the parameter to SearchSuccessful. Note that it is not
necessary to call the Authorize method before callingSearchTwitter.

USERNAME

The user name of the authorized user. Empty if there is no authorized user.

EVENTS

DirectMessagesReceived(list messages)

This event is raised when the recent messages requested through RequestDirectMessages have been retrieved.
A list of the messages can then be found in themessages parameter or the Messages property.

FollowersReceived(list followers2)

This event is raised when all of the followers of the logged-in user requested through RequestFollowers have
been retrieved. A list of the followers can then be found in the followers parameter or the Followers property.

FriendTimelineReceived(list timeline)

This event is raised when the messages requested through RequestFriendTimeline have been retrieved.
The timeline parameter and the Timeline property will contain a list of lists, where each sub-list contains a
status update of the form (username message)

IsAuthorized()

This event is raised after the program calls Authorize if the authorization was successful. It is also called after
a call to CheckAuthorized if we already have a valid access token. After this event has been raised, any other
method for this component can be called.

MentionsReceived(list mentions)

This event is raised when the mentions of the logged-in user requested through RequestMentions have been
retrieved. A list of the mentions can then be found in the mentions parameter or the Mentions property.

SearchSuccessful(list searchResults)

This event is raised when the results of the search requested through SearchSuccessful have been retrieved. A
list of the results can then be found in the resultsparameter or the Results property.

METHODS

Authorize()

Redirects user to login to Twitter via the Web browser using the OAuth protocol if we don't already have
authorization.

CheckAuthorized()
Checks whether we already have access, and if so, causes IsAuthorized event handler to be called.

DeAuthorize()

Removes Twitter authorization from this running app instance

DirectMessage(text user, text message)
This sends a direct (private) message to the specified user. The message will be trimmed if it exceeds
160characters.

Requirements: This should only be called after the IsAuthorized event has been raised, indicating that the
user has successfully logged in to Twitter.

Follow(text user)

Starts following a user.

RequestDirectMessages()
Requests the 20 most recent direct messages sent to the logged-in user. When the messages have been
retrieved, the system will raise theDirectMessagesReceived event and set the DirectMessages property to the list
of messages.

Requirements: This should only be called after the IsAuthorized event has been raised, indicating that the
user has successfully logged in to Twitter.

RequestFollowers()

Gets who is following you.

RequestFriendTimeline()
Gets the most recent 20 messages in the user's timeline.

RequestMentions()
Requests the 20 most recent mentions of the logged-in user. When the mentions have been retrieved, the
system will raise the MentionsReceived event and set the Mentions property to the list of mentions.

Requirements: This should only be called after the IsAuthorized event has been raised, indicating that the
user has successfully logged in to Twitter.

SearchTwitter(text query)

This searches Twitter for the given String query.

Requirements: This should only be called after the IsAuthorized event has been raised, indicating that the
user has successfully logged in to Twitter.

StopFollowing(text user)

Stops following a user.

Tweet(text status)
This sends a tweet as the logged-in user with the specified Text, which will be trimmed if it exceeds 160
characters.

Requirements: This should only be called after the IsAuthorized event has been raised, indicating that the
user has successfully logged in to Twitter.

TweetWithImage(text status, text imagePath)

This sends a tweet as the logged-in user with the specified Text and a path to the image to be uploaded,
which will be trimmed if it exceeds 160 characters. If an image is not found or invalid, the update will not be
sent.

Requirements: This should only be called after the IsAuthorized event has been raised, indicating that the
user has successfully logged in to Twitter.

STORAGE - APP INVENTOR FOR ANDROID

TABLE OF CONTENTS

 File
 FusionTablesControl
 TinyDB
 TinyWebDB

FILE

Non-visible component for storing and retrieving files. Use this component to write or read files on your device. The
default behavior is to write files to the private data directory associated with your App. The Companion writes files to
/sdcard/AppInventor/data for easy debugging. If the file path starts with a slash (/), then the file is created relative to
/sdcard. For example, writing a file to /myFile.txt will write the file in /sdcard/myFile.txt.

PROPERTIES
none

EVENTS

GotText(text text)

Event indicating that the contents from the file have been read.

METHODS

AppendToFile(text text, text fileName)

Appends text to the end of a file. Creates the file if it does not already exist. See the help text under SaveFile
for information about where files are written.

Delete(text fileName)
Deletes a file from storage. Prefix the filename with / to delete a specific file in the SD card (for example,
/myFile.txt will delete the file /sdcard/myFile.txt). If the filename does not begin with a /, then the file located in
the program's private storage will be deleted. Starting the file with // is an error because asset files cannot be
deleted.

ReadFrom(text fileName)
Reads text from a file in storage. Prefix the filename with / to read from a specific file on the SD card (for
example, /myFile.txt will read the file /sdcard/myFile.txt). To read assets packaged with an application (also
works for the Companion) start the filename with // (two slashes). If a filename does not start with a slash, it
will be read from the application's private storage (for packaged apps) and from /sdcard/AppInventor/data for
the Companion.

SaveFile(text text, text fileName)
Saves text to a file. If the filename begins with a slash (/) the file is written to the sdcard (for example, writing
to /myFile.txt will write the file to /sdcard/myFile.txt). If the filename does not start with a slash, it will be written
in the program's private data directory where it will not be accessible to other programs on the phone. There is
a special exception for the AI Companion where these files are written to /sdcard/AppInventor/data to facilitate

debugging. Note that this block will overwrite a file if it already exists. If you want to add content to a file use
the append block.

FUSIONTABLESCONTROL

A non-visible component that communicates with Google Fusion Tables. Fusion Tables let you store, share, query
and visualize data tables; this component lets you query, create, and modify these tables.

This component uses the Fusion Tables API V1.0.

Applications using Fusion Tables must authenticate with Google's servers. There are two ways this can be done. The
first way only uses an API Key which you (the developer) obtain. With this approach end-users must also login to
access a Fusion Table.

The second approach is to use Service Authentication. With this approach you create credentials and a special
"Service Account Email Address" which allows end-users to use your Fusion Tables without logging in; your service
account authenticates all access.

USING THE FUSIONTABLESCONTROL COMPONENT

CREATING FUSION TABLES

You will probably want to create your own Fusion Tables to experiment with as you are developing your apps. This is
as easy as creating a Google document, if you are familiar with that process. Here are the steps:

1. On the web, login to your Gmail account or any other Google service (e.g., Drive, YouTube). Navigate to
Google Drive.

2. Click the New button and navigate to More. If you do not see a Google Fusion Tables option, select Connect
more apps and scroll through the page of Google services to find the Fusion Tables service and connect it to
your Google Drive.

3. You may want to view some of the examples and work through a tutorial (e.g. Pizza Party Tutorial) to learn the
basics.

4. Click the See my tables button (top right of the page). This will bring you to your own page.
5. You should see a list of your own tables or tables that have been shared with you (possibly none).
6. Use the Create button to create a new table. Give it some column names and save it.
7. Click on the Share button (top right) to modify the table's permissions.

CREATING A FUSIONTABLES APP

When you drag the FusiontablesControl component onto the Designer, don't forget to set its ApiKey property, which is
initially blank. You should copy this from yourGoogle Developers Console and paste it into the property field.
To get an API key, follow these instructions.

1. Go to your Google Developers Console and login if necessary.
2. Under APIs & auth select the APIs item from the menu on the left.
3. Choose the Fusion Tables API from the list provided and turn it on.
4. On the left bar, select the Credentials item.
5. Under Public API access click Create new Key, choose Android key and click Create to generate an API key.

Your API key(s) will appear in the pane next to "Public API access". You must provide that key as the value for
the ApiKey property in your Fusion Tables app.

Once you have an API key, set the value of the Query property to a valid Fusiontables SQL query and
call SendQuery to execute the query. App Inventor will send the query to the Fusion Tables server and
the GotResult block will fire when a result is returned from the server. Query results will be returned in CSV format,
and can be converted to list format using the "list from csv table" or "list from csv row" blocks.
Note that you do not need to worry about UTF-encoding the query. But you do need to make sure the query follows
the syntax described in the reference manual, which means that things like capitalization for names of columns
matters, and that single quotes must be used around column names if there are spaces in them.
To set up Service Authentication for your Fusion Table, follow these additional steps:

1. In the Google APIs Console under APIs & auth select the APIs item from the menu on the left.
2. Click the Create new Client ID button. Select the Service account option, and click Create Client ID.
3. A file called the KeyFile (ends in extension .p12) will automatically download onto your computer. Save it in a

place you will remember. Once the creation is complete, you will get a table with your Service Account
information.

4. In the designer window of App Inventor, select the FusionTablesControl. In the properties pane, add
the ServiceAccountEmail (from the table on the console), upload the KeyFile, and check
the UseServiceAuthentication box.

5. Share the Fusion Table with your ServiceAccountEmail, and give it editing permissions, just like you would
share any other Google Doc with an email address.

PROPERTIES

ApiKey

Your Google API Key. See above for details on obtaining an API key.

KeyFile
Specifies the path of the private key file. This key file is used to get access to the FusionTables API through
Service Authentication.

Query
The query to send to the Fusion Tables API.

For legal query formats and examples, see the Fusion Tables API v1.0 reference manual.

Note that you do not need to worry about UTF-encoding the query. You must make sure the query follows the
syntax described in the reference manual. Note that capitalization for names of columns is necessary and that
single quotes must be used around column names if there are spaces in them.

ServiceAccountEmail

The Service Account Email Address used for Service Authentication.

UseServiceAuthentication
Indicates whether a service account should be used for authentication.

EVENTS

GotResult(text result)

Indicates that the Fusion Tables query has finished processing and returned with a result. The result of the
query will generally be returned in CSV format, and can be converted to list format using the "list from csv
table" or "list from csv row" blocks.

METHODS

DoQuery()

DEPRECATED. This block is deprecated as of the end of 2012. Use SendQuery instead.

ForgetLogin()
Forget the end-user's login credentials. Has no effect on Service Authentication.

GetRows(text tableId, text columns)
Gets all the rows from a specified Fusion Table. The tableId field (required) is the id of the Fusion Table. The
columns field is a comma-separated list of the columns to retrieve.

GetRowsWithConditions(text tableId, text columns, text conditions)
Gets all the rows from a Fusion Table that meet certain conditions. The tableId field (required) is the id of the
Fusion Table. The columns field is a comma-separated list of the columns to retrieve. The conditions field
specifies what rows to retrieve from the table (for example, the rows in which a particular column value is not
null).

InsertRow(text tableId, text columns, text values)
Inserts a row into the specified Fusion Table. The tableId field is the id of the Fusion Table. The columns field
is a comma-separated list of the columns into which to insert values. The values field specifies what values to
insert into each column.

SendQuery()
Send the query to the Fusion Tables server.

TINYDB

TinyDB is a non-visible component that stores data for an app.

Apps created with App Inventor are initialized each time they run. This means that if an app sets the value of a
variable and the user then quits the app, the value of that variable will not be remembered the next time the app is run.
In contrast, TinyDB is a PERSISTENT data store for the app. The data stored in a TinyDB will be available each time
the app is run. An example might be a game that saves the high score and retrieves it each time the game is played.
Data items are strings stored under TAGS. To store a data item, you specify the tag it should be stored under.
Subsequently, you can retrieve the data that was stored under a given tag.
Each app has its own data store. There is only one data store per app. Even if you have multiple TinyDB components,
they will use the same data store. To get the effect of separate stores, use different keys. You cannot use the TinyDB
to pass data between two different apps on the phone, although you CAN use the TinyDB to share data between the
different screens of a multi-screen app.

When you are developing apps using the AI Companion, all the apps using that Companion will share the same
TinyDB. That sharing will disappear once the apps are packaged and installed on the phone. During development you
should be careful to clear the Companion app's data each time you start working on a new app.

PROPERTIES
none

EVENTS
none

METHODS

ClearAll()

Clear the entire data store in the TinyDB.

ClearTag(text tag)
Clear the entry with the given tag.

any GetTags()
Return a list of all the tags in the TinyDB.

any GetValue(text tag, any valueIfTagNotThere)
Retrieve the value stored under the given tag. If there's no such tag, then return valueIfTagNotThere.

StoreValue(text tag, any valueToStore)
Store the value under the given tag. The storage persists on the phone when the app is restarted.

TINYWEBDB

Non-visible component that communicates with a Web service to store and retrieve information.

See Creating a Custom TinyWebDB Service.

PROPERTIES

ServiceURL

The URL to the database with which the component should communicate.

EVENTS

GotValue(text tagFromWebDB, any valueFromWebDB)

Indicates that a GetValue server request has succeeded.

ValueStored()
Event indicating that a StoreValue server request has succeeded.

WebServiceError(text message)
Indicates that the communication with the Web service signaled an error.

METHODS

GetValue(text tag)

Sends a request to the Web service to get the value stored under the given tag. The Web service must decide
what to return if there is no value stored under the tag. This component accepts whatever is returned.

StoreValue(text tag, any valueToStore)
Sends a request to the Web service to store the given value under the given tag.

CONNECTIVITY COMPONENTS - APP INVENTOR FOR ANDROID

TABLE OF CONTENTS

 ActivityStarter
 BluetoothClient
 BluetoothServer
 Web

ACTIVITYSTARTER

A component that can launch an activity using the StartActivity method.

Activities that can be launched include:

 Starting another App Inventor for Android app. To do so, first find out the CLASS of the other application by
downloading the source code and using a file explorer or unzip utility to find a file named
"youngandroidproject/project.properties". The first line of the file will start with "main=" and be followed by the
class name; for example, main=com.gmail.Bitdiddle.Ben.HelloPurr.Screen1. (The first components indicate that
it was created by Ben.Bitdiddle@gmail.com.) To make your ActivityStarter launch this application, set the
following properties:

o ActivityPackage to the class name, dropping the last component (for
example, com.gmail.Bitdiddle.Ben.HelloPurr)

o ActivityClass to the entire class name (for example, com.gmail.Bitdiddle.Ben.HelloPurr.Screen1)
 Starting the camera application by setting the following properties:

o Action: android.intent.action.MAIN
o ActivityPackage: com.android.camera
o ActivityClass: com.android.camera.Camera

 Performing web search. Assuming the term you want to search for is "vampire" (feel free to substitute your
own choice), set the properties to:

o Action: android.intent.action.WEB_SEARCH

o ExtraKey: query

o ExtraValue: vampire

o ActivityPackage: com.google.android.providers.enhancedgooglesearch

o ActivityClass: com.google.android.providers.enhancedgooglesearch.Launcher

 Opening a browser to a specified web page. Assuming the page you want to go to is "www.facebook.com"
(feel free to substitute your own choice), set the properties to:

o Action: android.intent.action.VIEW

o DataUri: http://www.facebook.com

PROPERTIES

Action

ActivityClass

ActivityPackage

DataType

DataUri

ExtraKey

ExtraValue

RESULT

ResultName

RESULTTYPE

RESULTURI

EVENTS

AfterActivity(text result)

Event raised after this ActivityStarter returns.

ActivityCanceled()
Event raised if this ActivityStarter returns because the activity was canceled.

METHODS

text ResolveActivity()

Returns the name of the activity that corresponds to this ActivityStarter, or an empty string if no corresponding
activity can be found.

StartActivity()
Start the activity corresponding to this ActivityStarter.

BLUETOOTHCLIENT

Bluetooth client component

PROPERTIES

ADDRESSESANDNAMES

The addresses and names of paired Bluetooth devices

AVAILABLE
Whether Bluetooth is available on the device

CharacterEncoding
DelimiterByte

ENABLED

Whether Bluetooth is enabled

HighByteFirst
ISCONNECTED

Secure

Whether to invoke SSP (Simple Secure Pairing), which is supported on devices with Bluetooth v2.1 or higher.
When working with embedded Bluetooth devices, this property may need to be set to False. For Android 2.0-
2.2, this property setting will be ignored.

EVENTS
none

METHODS

number BytesAvailableToReceive()

Returns an estimate of the number of bytes that can be received without blocking

boolean Connect(text address)
Connect to the Bluetooth device with the specified address and the Serial Port Profile (SPP). Returns true if
the connection was successful.

boolean ConnectWithUUID(text address, text uuid)
Connect to the Bluetooth device with the specified address and UUID. Returns true if the connection was
successful.

Disconnect()
Disconnect from the connected Bluetooth device.

boolean IsDevicePaired(text address)
Checks whether the Bluetooth device with the specified address is paired.

number ReceiveSigned1ByteNumber()
Receive a signed 1-byte number from the connected Bluetooth device.

number ReceiveSigned2ByteNumber()
Receive a signed 2-byte number from the connected Bluetooth device.

number ReceiveSigned4ByteNumber()
Receive a signed 4-byte number from the connected Bluetooth device.

list ReceiveSignedBytes(number numberOfBytes)
Receive multiple signed byte values from the connected Bluetooth device. If numberOfBytes is less than 0,
read until a delimiter byte value is received.

text ReceiveText(number numberOfBytes)
Receive text from the connected Bluetooth device. If numberOfBytes is less than 0, read until a delimiter byte
value is received.

number ReceiveUnsigned1ByteNumber()
Receive an unsigned 1-byte number from the connected Bluetooth device.

number ReceiveUnsigned2ByteNumber()
Receive a unsigned 2-byte number from the connected Bluetooth device.

number ReceiveUnsigned4ByteNumber()
Receive a unsigned 4-byte number from the connected Bluetooth device.

list ReceiveUnsignedBytes(number numberOfBytes)
Receive multiple unsigned byte values from the connected Bluetooth device. If numberOfBytes is less than 0,
read until a delimiter byte value is received.

Send1ByteNumber(text number)
Send a 1-byte number to the connected Bluetooth device.

Send2ByteNumber(text number)
Send a 2-byte number to the connected Bluetooth device.

Send4ByteNumber(text number)
Send a 4-byte number to the connected Bluetooth device.

SendBytes(list list)
Send a list of byte values to the connected Bluetooth device.

SendText(text text)
Send text to the connected Bluetooth device.

BLUETOOTHSERVER

Bluetooth server component

PROPERTIES

Available: boolean

Tell whether Bluetooth is available on the Android device.

CharacterEncoding: text
The character encoding to use when sending and receiving text.

DelimiterByte: number
The delimiter byte to use when passing a negative number for the numberOfBytes parameter when calling
ReceiveText, ReceiveSignedBytes, or ReceiveUnsignedBytes.

Enabled: boolean
Tell whether Bluetooth is enabled.

HighByteFirst: boolean
Whether 2 and 4 byte numbers should be sent and received with the high (or most significant) byte first.
Check the documentation for the device with which your app will be communicating for the appropriate setting.
This is also known as big-endian.

IsAccepting: boolean
Tell whether this BluetoothServer component is accepting an incoming connection.

IsConnected: boolean
Tell whether a Bluetooth connection has been made.

EVENTS

ConnectionAccepted()

Indicates that a bluetooth connection has been accepted.

METHODS

AcceptConnection(text serviceName)

Accept an incoming connection with the Serial Port Profile (SPP).

AcceptConnectionWithUUID(text serviceName, text uuid)
Accept an incoming connection with a specific UUID.

number BytesAvailableToReceive()
Returns an estimate of the number of bytes that can be received without blocking

Disconnect()
Disconnect from the connected Bluetooth device.

number ReceiveSigned1ByteNumber()
Receive a signed 1-byte number from the connected Bluetooth device.

number ReceiveSigned2ByteNumber()
Receive a signed 2-byte number from the connected Bluetooth device.

number ReceiveSigned4ByteNumber()
Receive a signed 4-byte number from the connected Bluetooth device.

list ReceiveSignedBytes(number numberOfBytes)
Receive multiple signed byte values from the connected Bluetooth device. If numberOfBytes is less than 0,
read until a delimiter byte value is received.

text ReceiveText(number numberOfBytes)
Receive text from the connected Bluetooth device. If numberOfBytes is less than 0, read until a delimiter byte
value is received.

number ReceiveUnsigned1ByteNumber()
Receive an unsigned 1-byte number from the connected Bluetooth device.

number ReceiveUnsigned2ByteNumber()
Receive a unsigned 2-byte number from the connected Bluetooth device.

number ReceiveUnsigned4ByteNumber()
Receive a unsigned 4-byte number from the connected Bluetooth device.

list ReceiveUnsignedBytes(number numberOfBytes)
Receive multiple unsigned byte values from the connected Bluetooth device. If numberOfBytes is less than 0,
read until a delimiter byte value is received.

Send1ByteNumber(text number)
Send a 1-byte number to the connected Bluetooth device.

Send2ByteNumber(text number)
Send a 2-byte number to the connected Bluetooth device.

Send4ByteNumber(text number)
Send a 4-byte number to the connected Bluetooth device.

SendBytes(list list)
Send a list of byte values to the connected Bluetooth device.

SendText(text text)
Send text to the connected Bluetooth device.

StopAccepting()
Stop accepting an incoming connection.

WEB

Non-visible component that provides functions for HTTP GET, POST, PUT, and DELETE requests.

PROPERTIES

AllowCookies

Whether the cookies from a response should be saved and used in subsequent requests. Cookies are only
supported on Android version 2.3 or greater.

RequestHeaders
The request headers, as a list of two-element sublists. The first element of each sublist represents the request
header field name. The second element of each sublist represents the request header field values, either a
single value or a list containing multiple values.

ResponseFileName
The name of the file where the response should be saved. If SaveResponse is true and ResponseFileName is
empty, then a new file name will be generated.

SaveResponse
Whether the response should be saved in a file.

Url
The URL for the web request.

EVENTS

GotFile(text url, number responseCode, text responseType, text fileName)

Event indicating that a request has finished.

GotText(text url, number responseCode, text responseType, text responseContent)
Event indicating that a request has finished.

METHODS

text BuildRequestData(list list)

Converts a list of two-element sublists, representing name and value pairs, to a string formatted as
application/x-www-form-urlencoded media type, suitable to pass to PostText.

ClearCookies()
Clears all cookies for this Web component.

Delete()
Performs an HTTP DELETE request using the Url property and retrieves the response.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The ResponseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

Get()

Performs an HTTP GET request using the Url property and retrieves the response.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The ResponseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

text HtmlTextDecode(text htmlText)
Decodes the given HTML text value. HTML character entities such as &, <, >, ', and "
are changed to &, <, >, ', and ". Entities such as &#xhhhh, and &#nnnn are changed to the appropriate
characters.

any JsonTextDecode(text jsonText)
Decodes the given JSON encoded value to produce a corresponding AppInventor value. A JSON list [x, y, z]
decodes to a list (x y z), A JSON object with name A and value B, (denoted as A:B enclosed in curly braces)
decodes to a list ((A B)), that is, a list containing the two-element list (A B).

PostFile(text path)
Performs an HTTP POST request using the Url property and data from the specified file.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The ResponseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

PostText(text text)
Performs an HTTP POST request using the Url property and the specified text.
The characters of the text are encoded using UTF-8 encoding.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The responseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

PostTextWithEncoding(text text, text encoding)
Performs an HTTP POST request using the Url property and the specified text.
The characters of the text are encoded using the given encoding.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The ResponseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

PutFile(text path)
Performs an HTTP PUT request using the Url property and data from the specified file.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The ResponseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

PutText(text text)
Performs an HTTP PUT request using the Url property and the specified text.
The characters of the text are encoded using UTF-8 encoding.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The responseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

PutTextWithEncoding(text text, text encoding)
Performs an HTTP PUT request using the Url property and the specified text.
The characters of the text are encoded using the given encoding.
If the SaveResponse property is true, the response will be saved in a file and the GotFile event will be
triggered. The ResponseFileName property can be used to specify the name of the file.
If the SaveResponse property is false, the GotText event will be triggered.

text UriEncode(text text)
Encodes the given text value so that it can be used in a URL.

any XMLTextDecode(text XmlText)
Decodes the given XML string to produce a list structure. See the App Inventor documentation on "Other
topics, notes, and details" for information.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

© 2012-2013 Massachusetts Institute of Technology

